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ABSTRACT

The finite element method combined with elasticity results governing fiber

pullout is used to investigate toughening of unidirectional fiber-reinforced

ceramic matrix composites. The most important literature concerned with

toughening of refractory fiber-reinforced ceramic matrix composites is reviewed,

including both experimental attempts to pcoduce tougher composites and

analytical models to predict and describe the toughening mechanisms. The

primary toughening mechanisms include crack-bridging, crack-tip/fiber

interaction and crack front bowing. Of these, the bridging and interaction,

which are idealistically two-dimensional mechanisms, dominant the toughening

and control the third bowing mechanism. A two-dimensional elasticity solution

governing the fiber pullout mechanics of crack bridging is presented and

applied in a two-dimensional finite element toughening model. This model

includes both the crack bridging coupled with the crack-tip/fiber interaction

mechanisms and is used to investigate the role of various parameters in the

composite toughening. In addition, certain stresses of interest governing crack

propagation are reported. The investigated parameters include fiber/matrix

stiffness ratio, interfacial frictior coefficient, crack-tip position and remote

applied load. It is found that crack bridging is the dominant mechanism and the

toughening in the bridged composite is strongly dependent on stiffness ratio,

crack tip position and remote applied load. Additionally, the stress results

indicate that crack propagation in the bridged composite is controlled only by

very local crack tip effects, while propagation in an unbridged composite may be

more of a structural phenomena. The predicted toughening results agree well

with the limited experimental results in the literature.
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1. INTRODUCTION

Recently, a large degree of effort has been focused on the problem of

toughening structural ceramics, particularly in the region of ultra-high

temperature applications. Fiber, whisker and particulate reinforcements as

well as transformation toughening are the most popular toughening routes

being pursued. Among these various approaches, fiber toughening currently

shows the most promise for producing not only a tougher, stronger and most

importantly, a gently failing ceramic composite, but also one which behaves in

a more deterministic manner (as opposed to the probablistic behavior of

monolithic ceramics). The literature survey of this paper summarizes some of

the attempts to produce successful refractory fiber toughened ceramics.

A typical (idealized) longitudinal tensile stress-strain curve of a

unidirectional, continuous fiber-reinforced ceramic composite is shown in Fig.

1.1. The unreinforced ceramic matrix exhibits complete linear-elastic behavior

and fails catastrophically at a low strain (0.1-0.2% typically). The fiber

reinforced ceramic exhibits linear-elastic behavior up to the matrix

microcracking stress. At this point, multiple cracks bridged by intact fibers

form in the matrix and softer, nonlinear stress-strain behavior is developed.

Continued loading is essentially carried by the bridging fibers and eventually

causes the fibers to fail, leading to the composite fracture with an ultimate

strain generally greater than 0.5%.

Although the increase in ultimate strength and strain depicted in Fig.

1.1 are important concerns for improving properties of fiber reinforced

ceramics, currently the most critical, life limiting issue for thermo-structural

applications is the matrix microcracking stress. Before the matrix cracks it

protects the fibers and the interface from the hot oxidizing environment.
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Once the mptrix cracks, the environment penetrates to the fibers and interface

region with subsequent degradation of both the fiber and the interface. This

typically leads to fiber weakening and the formation of a strong fiber-matrix

bond, causing the composite to fracture in a brittle fracture mode.

Adequate understanding of the fiber toughening mechanism provides

proper control of matrix microcracking, and becomes paramount to the

successful production and employment of fiber-reinforced ceramics. Although

crack propagation in fiber reinforced ceramics is physically a complicated

process, stable matrix cracking and growth often observed during

microcracking may be modeled conveniently as a repeating sequence of three

major steps. The three steps are shown in Figs. 1.2a through 1.2c, where the

fibers are idealized as arranged so that on the x2 -x 3 plane they appear in a

periodic (e.g., square) array. In the first step, the crack is propagating

along the X2-X 3 plane so that the crack front is parallel to and between two

rows of fibers. interface debonding and slipping along the fiber-matrix

interface may occur so that the fibers behind the crack front are bridging

the crack as shown in Fig. 1.2a. As the crack progresses forward, the

regions of the crack front with fibers in their path experience a lower stress

intensity factor K, [25-28] compared to those regions with free paths, due to

the restraining effect of the fibers. This variation in K, along the crack

front causes it start bowing as it moves closer to the fiber, as shown in Fig.

1.2b.

When the crack reaches the fibers, the matrix is now disconnected at

the fibers and the interface slips or debonds so that the crack front is

essentially broken into a series of arcs between the fibers, as shown in Fig.

1.2c. As the bows move forward, their ends move around the fibers. At some
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point the periodic bowing crack fronts reach their maximum, critical bowing

depth and the ends of the bows touch, forming one united crack front again.

The row of fibers originally in front of the crack have passed through and

are now bridging the crack. The crack front straightens as it progresses and

returns to the configuration of Fig. 1.2a.

Many coupled three-dimensional toughening mechanisms occur in the

idealized sequence outlined above. The dominant mechanisms include, among

others, crack bridging and crack-tip/fiber interactions. The literature survey

of this paper covers the major attempts to model some of these toughening

mechanisms. Unfortunately, many of these models suffer from unrealistic

simplifications and/or ignore coupling between different mechanisms.

The object of this research is to model the two dominant longitudinal

toughening mechanisms in fiber reinforced ceramics, i.e., crack bridging and

crack-tip/fiber interaction, in an accurate manner which also includes coupling

effects. Because the crack bridging generally involves fiber pullout, an

additional effort is made to understand and apply the mechanics of the pullout

process. In next chapter, the important relevant literature is reviewed,

including both experimental attempts to produce successful refractory

composites and analytical approaches to model the toughening mechanisms.

The mechanics of two-dimensional fiber pullout are studied in Chapter 3 and

analytical solutions governing the pullout process are derived. In Chapter 4,

a two-dimensional toughening analysis is conducted, employing the pullout

results of Chapter 3. Conclusions of the research are presented in Chapter 5.
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2. LITERATURE REVIEW

Thorough understanding of the fiber crack bridging process has helped

to produce significant recent successes in developing tough fiber-reinforced

ceramics, as shown in the experimental review below. It is now understood

that a tough, low-stiffness matrix, coupled with strong, high-stiffness, small

diameter fibers and a weak fiber/matrix interface are essential to raise the

matrix microcracking stress and to promote crack bridging in a brittle ceramic

composite. Crack bridging, although dominant, however, is not the only

significant toughening mechanism of fiber-reinforced ceramics. Analytical

models describing crack bridging and other toughening mechanisms are

reviewed in the second half of this chapter.

2.1 EXPERIMENTAL APPROACH

The interface condition necessary for successful crack bridging (and

resulting stress-strain response depicted in Fig. 1.1) is usually manifested in

a thin carbon layer between the fiber and matrix. Many glass ceramic

matrices can be tailored (depending on fiber surface chemistry) to promote the

formation of a carbon fiber-matrix interface, with the result that successful

fiber-reinforced glass ceramics have been produced without undue difficulty.

However, these composites are limited in high-temperature capabilities by their

glass matrices. To extend the high-temperature capabilities of fiber-reinforced

ceramics, recent attempts have focused on the use of polycrystalline silicon-

based ceramics (SiC and Si 3N4 ) as matrix materials, particularly on Si 3 N4

because of its high toughness, strength and low stiffness. Although these

polycrystalline ceramic materials generally have high stiffness and are difficult

to process (compared to glass ceramics), they are attractive as matrix
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materials both because of their refractoriness and their high strength and

fracture toughness.

2.1.1 Fiber-Reinforced Si 3N4 Ceramics

Attempts [3-7] to produce Si 3N4 based composites use both hot-pressed

Si 3 N4 matrices and reaction-bonded Si 3N4 (RBSN) matrices reinforced with

either polymer-precursor (Nippon Carbon Co. NICALON) or chemical vapor

deposition (CVD) (Avco SCS-2 and SCS-6) SiC fibers. The NICALON and SCS

fibers by way of their fabrication methods differ considerably physically,

chemically and mechanically, as summarized by DiCarlo [1]. The SCS fibers

have a large diameter (143 micron), a pyrolitic carbon core and a thin outer

carbon coating. The main body of the SCS fibers, however, is near

stoichiometric SiC. This high chemical purity of the SCS fibers is reflected in

their high modulus (400 GPa) and strength (near 4 GPa). The NICALON fibers,

conversely, have a small diameter (15 micron) and a microstructure containing

Sq 2  nd ev-Qq carbon [1] These impurities result in a low stiffness (180

GPa) and strength (2 GPa), as well as reduced thermal stability [2].

Rice et. al. [3] investigate NICALON reinforced hot-pressed silicon nitride

and find a small improvement in strength. However, the high fabrication

temperature required both degrades the NICALON fiber (through grain growth)

and facilitates a strong fiber-matrix bond [3], limiting the improvement in

composite properties. Shetty et. al. [4] utilize a similar hot-pressed Si 3 N4

matrix but incorporate the SCS-6 fibers as reinforcements. Their results are

successful in that a weak carbon interface layer is maintained, allowing the

fiber bridging to occur. The SCS-6/hot-pressed Si 3 N4 composite shows

increased toughness (greater than 8 MPa;m at 30% Vf) and graceful failure;

however, the composite ultimate strength is nearly half of the monolithic hot-
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pressed Si 3N4 [4]. This reduction in strength is mainly attributed to the

change in fiber microstructure, indicating that, similar to the Rice et. al.

study with NICALON fibers [3], the high fabrication temperatures required for

hot-pressing Si 3N4 degrade the reinforcing fibers.

To avoid the problems associated with the hot-pressed SiC/Si 3 N4

composites, Bhatt and Phillips [5] use a RBSN matrix reinforced with SCS-6

fibers, and Corbin, Rossetti and Hartline [6] use a similar matrix reinforced

with both SCS-6 and SCS-2 fibers. The SCS-2 fibcrs are identical to the SCS-

6 fibers except that they have a thinner (approximately 60%) outer layer of

carbon [6]. The RBSN is attractive as a matrix material because of its lower

processing temperature (1450"C), lower modulus and higher creep resistance

[6] relative to the hot-pressed SigN4 (typically processed at 1750"C with glassy

densification aids). In both investigations, excellent properties of the SCS-6

reinforced composite are obtained with a typical strength near 700 MPa (Ef

0.5%) [5] for Vf = 30% and in some cases, the strength exceeds 900 MPa (Ef >

0.5%) [6] for 50% Vf. (Strength of a comparable monolithic RBSN is

approximately 350 MPa (Ef : .18%) [6].) Composites utilizing the SCS-2 fibers

[6] show a slight improvement in strength of near 450 MPa (Ef > 0.5%). The

difference in strength between the SCS-6 and the SCS-2 fiber-reinforced

materials demonstrates the importance of the carbon interface layer.

In an attempt to produce a successful NICALON/RBSN composite, Corbin,

Willkens and Hartline [7] coat the thinner NICALON fibers by a CVD method

with several materials before composite fabrication. Composites containing

uncoated, Si 3N4-coated, A1 2 03-coated and SiC-coated fibers all fail

catastrophically in a brittle fracture mode, while carbon-coated composites fail

gracefully (Ef t 0.5%), again demonstrating the importance of the weak carbon

6



interface. The strength of the carbon-coated NICALON-reinforced composites

is only about 400 MPa, a reflection of the weaker NICALON fibers.

2.1.2 Fiber-Reinforced SiC Ceramics

The recent developments of SiC/RBSN composites, however, have also

been accompanied by some successes with SiC-fiber reinforced, chemical-

vapor-infiltration (CVI) SiC composites. The CVI SiC as a matrix material has,

much like RBSN, .ertain advantages over its hot-pressed counterpart. These

advantages include lower fabrication temperatures (1200"C), lower modulus and

higher creep resistance (again due to the absence of glassy densification

aids).

NICALON-reinforced CVI SiC composites have been investigated by

several researchers [8-10]. Stinton, Caputo and Lowden [8] and Lamicq et. al.

[91 observe composite strengths between 250 MPa and 350 MPa while Moeller

et. al. [10] obtain a strength greater than 600 MPa by using a different

processing technique. Extensive fiber pullout and large failure strains (near

1.0%) are observed in all tiree investigations [8-10], reflecting good interface

properties. Moeller et. al. i'ind the composite strength drops to near 200 MPA

at an elevated temperature of 1200'C while Lamicq et. al. actually observe a

slight increase in composite strength to greater than 300 MPa up to 1400"C.

Additionally, Moeller et. al. [10] determine that CVD coating the NICALON fibers

with carbon prior to infiltration of the matrix increases the composite strcngth

only slightly to near 690 MPa at room temperature.

Fitzer and Gadow [11] investigate a variety of SiC-based composites,

using both CVI and reaction-bonded SiC matrices reinforced with NICALON,

SCS-6 and carbon fibers. The SCS-6 reinforced materials exhibit the highest

strengths of 950 MPa and 600 MPa for the composites with CVI and RB SiC
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matrices respectively. But, good fiber-matrix bonding results from both

processing methods so that failure is mostly catastrophic for all unidirectional

composites, as indicated by the small (0.2%) failure strain.

2.1.3 Experimental Summary

The success of Moeller et. al. [10] and the limited progress of Stinton,

Caputo and Lowden [8] and Lamicq et. al. [91 suggest that the SiC/CVI-SiC

composites are also promising, although the SiC/RBSN, particularly the SCS-

6/RBSN, composites (e.g., [5] and [6]) have been more successful. Despite

these successes (where testing temperatures have typically been limited to

1200"C), however, it is important to recognize, as is noted by DiCarlo [1],

currently there exist no truly satisfactory fibers for refractory ceramic

reinforcement applications. Also of concern, as mentioned before, is the

vuinerability of the all-important carbon interface layer (once matrix cracks

have formed). For fiber-reinforced ceramics to become truly reliable and

useful materials, then these goals (among others) need to be met: development

of strong, stiff, small-diameter fibers which retain their strength both during

composite fabrication and when exposed to a refractory air environment; and

innovative approaches to either protect the carbon interface from

environmental exposure after matrix microcracking or to develop more stable

diffusion barriers to control fiber-matrix bonding.

2.2 ANALYTICAL APPROACH -- TOUGHENING MODELS

Reinforced ceramics are unique in the field of composite materials

because the major constituents, the fiber and matrix, generally exhibit similar

(in contrast to fiber-reinforced polymer matrix composites), linear-elastic

stress-strain responses up to failure for most loading modes (creep loading
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being an obvious exception). The linear behavior allows not only the use of

simple stress-strain and energy-balance laws, but, in some cases, permits the

use of linear-elastic fracture mechanics (LEFM) for modeling purposes. Thus,

many of the models surveyed below are based on applications of elastic

energy-balance formulations and basic, often classical LEFM solutions.

Various mechanisms of the idealized sequence outlined in Fig. 1.2 have

been modeled in the literature. These models have been grouped below in the

following categories: the crack-bridging models, which model one aspect of Fig.

1.2, the inclusion-interaction models, which are concerned with portions of

both Fig. 1.2b and Fig. 1.2c., and the crack-bowing models, which describe the

breakaway bowing configuration in Fig. 1.2c.

2.2.1 Crack-Bridging Models

The first crack-bridging model, commonly called the ACK theory of

microcracking, was introduced by Aveston, Cooper and Kelly [12] in 1971.

Assuming a crack is completely bridged by stronger fibers, they use an

energy-balance analysis to determine the first matrix microcracking strain as

2o4, GEVf 1/3
eu .ioG.EfV )] (2.1)

where emu is the matrix microcracking strain, r o is the interfacial sliding shear

stress, E, Ef and Ec are the moduli of the matrix, fiber and composite,

respectively, df is the diameter of the fibers, Vf is the volume fraction of

fibers, and G. is the matrix energy release rate. According to this model, Emu

is independent of the total crack length a; rather, the microcracking strain is

controlled by the fiber diameter d. This behavior is commonly referred to as

steady-state microcracking or crack-bridging, due to the invariance of the

microcracking criteria with crack growth, and the resulting stability of that
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growth. Additionally, according to Eq. (2.1), F=U increases as to, G3 , Ef and Vf

increase and as E. decrease. Although this model predicts with reasonable

accuracy the microcracking stresses observed in experiments [12,13], it does

contain certain ideological deficiencies. For example, fiber-matrix interfaces

more realistically exhibit stick/frictional slip behavior rather than a purely

frictional response. Also, as seen in experiments, as interface strength is

increased the fibers will pass, rather than bridge the crack. In this case, the

microcracking stress of the composite is maximum, but the toughness of the

composite is decreased as catastrophic failure of the composite occurs.

However, despite its limitation in actual physical processes, the ACK model is

important for two reasons: its simple formulation helps to give an

understanding of the basic fiber-bridging process, and it introduces the first

steady-state (i.e., crack-length independent) microcracking criteria. The

steady-state cracking concept is further developed in the later crack-bridging

models reviewed below.

In 1985, Marshall, Cox and Evans [13] (MCE) used a combined shear-

lag/fracture mechanics analysis to model a completely bridged matrix crack as

an edge crack in an isotropic, homogleneous plate with closure tractions on the

crack surface. The fibers are assumed to be frictionally constrained in the

matrix and the pullout relationship for the bridging fibers is of the form F a

,v o , where F is the pullout force on the end of a fiber and v. is the matrix

crack opening displacement. This relationship is based on a questionable,

assumed variation of interfacial shear stress that is constant along the

slipping length of the fiber and zero elsewhere. A linear-elastic fracture

mechanics concept is used to predict a matrix microcracking stress for steady-

state crack growth similar to that predicted by the ACK energy-balance
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derived model [12] in Eq. (2.1). However, the fracture mechanics formulation

adopted in [13] also reveals the behavior of the stress intensity factor K, at

the crack tip. The Kti p is found to be a strong function of the crack length

a, only for short cracks. As the crack grows in length, the Kti p

asymptotically approaches the constant steady-state bridging stress intensity

factor K.., for a given remote applied load. For a crack length typically

greater than ten fiber diameters, Kti p is nearly equal to KS and thus

independent of crack length, indicating stable crack growth. For long (e.g.,

steady-state) cracks, Kti p is controlled by the fiber size, rather than the total

crack length, in a manner similar to Eq. (2.1). Additionally, the ratio

Ktip/Kre,, where Krem = ocY4(iTao) is related to the total crack length and the

external applied load ac, is less than unity for all crack lengths, indicating

macroscopic toughening. Although this fracture mechanics model suffers from

realistic limitations similar to the ACK model, (isotropic homogeneity is an

obvious assumption here) it is an important model for two reasons: it discloses

the nature of Kti p and its dependence on crack length and material properties,

and it validates the steady-state growth assumptions (i.e., a crack-length

independent solution exists) implicit in the ACK energy-balance analysis.

In 1986 Budiansky, Hutchinson and Evans [14] (BHE) use a more

rigorous energy-based fracture mechanics approach to examine the steady-

state bridging process with both bonded/debonding fibers and unbonded

frictionally sliding fibers. The focus of the BHE analysis is on the large-slip

(i.e. small interface toughness/friction) and no-slip (no-debonding/no-sliding

for large interface toughness/friction) solutions and the transition between

these two modes. The large-slip solution is identical to the ACK [121

microcracking model, and describes a composite with a large failure strain and
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high toughness. Conversely, the no-slip condition produces the highest

microcracking stress, but not the highest composite toughness. The BHE

formulation describes the transition between these two modes (maximum

toughness and maximum microcracking stress) in terms of interface properties.

The no-debonding condition occurs typically for Gd greater than 2 G./5, where

Gd and G. are the debonding and matrix fracture energy release rates, while

the no-sliding condition is dependent on material properties, friction

coefficient, and residual thermal stresses. Thus, the BHE steady-state crack-

bridging model expands the ACK [121 model by the addition of the debonding

interface consideration and the recognition and quantification of interface

properties (friction or toughness) that cause a transition to the no-slip

(maximum microcracking stress) mode.

Budiansky and Amazigo [15] (BA) model a steady-state bridged crack as

reinforced by distributed springs, a fracture mechanics technique developed

by Rose [16], to investigate the frictional interface fiber bridging in terms of

the large-slip and no-slip conditions. The BA model contains the important

elements from the previous bridging models [12-14]. It includes the transition

from large-slip to no-slip conditions (i.e. the BHE [141 model); its fracture

mechanics formulation explicitly reveals Kti p (similar to the MCE [13] model),

and additionally it allows orthotropic composite elastic properties. The authors

present their results in an equally comprehensive manner that reveals the

interplay between matrix microcracking strength, composite ultimate strength

and composite fracture toughness. Generally as the microcracking strength is

increased (by altering interface friction, fiber stiffness, etc) towards the

composite ultimate strength (given by volume fraction * fiber strength) the

composite toughness declines. This BA bridging model essentially represents
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the most complete steady-state bridging model of the form introduced in the

ACK [111 model.

Majumdar, Newaz and Rosenfield [171 (MNR) slightly modify the shear-lag

model of the MCE steady-state bridging analysis [131 and account for crack

interactions in an analysis essentially the same as the MCE model. The

resulting pullout behavior, however, is of the same form as that used in the

MCE model. If the parallel periodic microcracks in the composL. are spaced

too closely then the shear-lag cannot develop to its maximum value, essentially

reducing the maximum bridging force the fibers can exert on the crack. The

MNR approach shows that the constant Kti p for steady-state crack growth K8

is then higher (for a given remote loading) and reached discontinuously,

compared to the smoothly asymptotically approached value predicted by the

MCE model. This Kti p behavior would result in discontinuous stress-strain

response during composite "yielding" (microcracking), as is often seen in

experiment. Although the shear-lag and crack interaction corrections are

(realistically) important, this steady-state bridging model is essentially a

refinement of the earlier MCE model and thus lacks the completeness and

insight given by the later BA [15] model.

These steady-state fiber-bridging models, with the BA model being the

most comprehensive, are essentially refinements of the original ACK model and

its important concept of stable, crack-length independent microcracking.

Despite its simplicity, the ACK [121 model gives surprisingly accurate

predictions of the matrix microcracking stress. The later BA analysis [15],

however, gives much more insight into the mechanics of fiber bridging. All

frictionally sliding fiber-bridging models, however, employ the same unproved

fiber pullout hypothesis derived in the MCE analysis.
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2.2.2 Crack-Tip/Inclusion Interaction Models

A crack tip approaching an inclusion may interact through various

mechanisms, including deflection of the crack and alteration of the crack-tip

Kti p. These mechanisms are discussed below, with the second mechanism,

alteration of Kti p , being broken into two sections covering particle and fiber

effects. Mechanisms not considered here include, among others, crack

branching, crack blunting and crack arrest.

2.2.2.1 Crack-Deflection Models

Theoretically, crack-deflection toughening occurs whenever interactions

between the crack front and a second-phase inclusion cause the crack to

propagate out of plane, reducing the stress intensity factor at the crack tip

compared to self-similar planar crack growth. This toughening mechanism for

different inclusions (spheres, rods and plates) is analyzed by Faber and

Evans [18] (by using the method of quadratures [19] to predict the mode I

and mode II stress intensity factors at the tip of a slightly kinked crack).

Numerical results, predicting toughness increases for spherical and ellipsoidal

inclusions, are conducted by Seshadri, Srinivasan and Keeler [20]. Both

analyses [18,20] are simplistic in that they ignore the perturbed stress field

introduced by the inclusions and also assume that the crack front progresses

so as to globally deflect around the inclusions through a combination of tilting

(the crack rotates about an axis parallel to the crack front) and twisting (the

crack rotates about an axis parallel to the direction of crack propagation). In

continuous fiber-reinforced ceramics although the crack tip may be locally

deflected up and down along an approached debonding fiber, the progressing

crack as a whole generally remains in-plane in a self-similar growth manner

and passes fibers by a bowing rather than the deflecting mechanism, i.e., the
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global crack deflection modeled in these analyses is not a toughening

mechanism of interest for continuous fiber-reinforced ceramics.

2.2.2.2 Particulate-Interactions Models

Using Muskhelishvili complex variable methods, Tamate [21] investigates

the problem of a crack in a plate approaching a circular inclusion for the case

of a completely bonded inclusion with no residual stresses. Tamate [211 finds

that the Ki p depends on, besides the geometrical parameters, the ratio of the

elastic moduli of the particle and the matrix (E./E.). If Ep/E. is greater than

unity, then the Kti p declines as the crack approaches the inclusion (compared

to Kti p for a homogeneous plate); and, if Ep/E. is less than unity, Kti p rises as

the crack approaches the inclusion. The results [21] suggest that a material

may be toughened in this manner, i.e. through lowering the crack-driving

force, by adding stiffer inclusions.

Tirosh and Tetelman [22] and Khaund, Krstic and Nicholson [23] both

extended, using an approximate image-stress formulation, the problem of a

crack approaching a circular inclusion to allow for residual stresses due to an

interference fit of the inclusion. Additionally, Tirosh and Tetelman [22]

allowed for unbonded (frictionless interface) inclusions and examined, using

finite element methods, the effect of a thin interface layer between the

inclusion and the matrix. The results of both Tirosh and Tetelman [221 and

Khaund, Krstic and Nicholson [23] for perfectly-bonded inclusions without

residual stresses are similar to Tamate's [21]. Khaund, Krstic and Nicholson

find that the effect of residual stresses for perfectly bonded inclusions is

small, increasing or decreasing Kti p slightly depending upon whether the

residual matrix hoop stress is tensile or compressive. If the inclusions are

unbonded Tirosh and Tetelman find that Kti p increases with increasing
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interference. Additionally, the finite element study of Tirosh and Tetelman

[22] on the effect of a finite thickness interface shows that as Ej/Ep, where E1

is the interface modulus, decreases from unity, Kti p increases, reducing the

toughening effect. These results suggest that the to,,ghening effect due to

particle/crack interaction (in the sense discussed here) can be maximized by

using stiff, well bonded inclusions with thermal expansion characteristics that

generate a compressive hoop stress in the matrix. Note that these particle

properties may not, however, be optimum for promoting other types of

particle/crack interactions, specifically crack bridging and crack deflection.

2.2.2.3 Fiber-Interaction Models

The problem of a crack tip approaching a finite-width fiber with various

interface conditions (perfectly bonded, bonded/debonding, frictional sliding,

etc) has not specifically been examined, to the author's knowledge, by any

investigators. However, certain related classical fracture mechanics solutions

lend insight into this problem. Zak and Williams [24] in 1963 first solved the

problem of a semi-infinite crack terminating at and normal to the interface in

a bimaterial plate containing isotropic phases. Zak and Williams used an

eigenfunction expansion technique to investigate the resulting stress

singularity at the crack tip. Rather than obeying the standard 1/4r crack tip

singularity, the stress follow a singularity that depends upon the ratios of

elastic properties of the two phases [24]. If E2 /E 1 is greater than unity,

where E1 is the modulus of the first, cracked region and E2 is the modulus of

the second, uncracked region, then the strength of the singularity is lessened

(compared to the 1/;r singularity). Similarly, if E2/E 1 is less than inity, the

strength of the singularity is increased. Note that when Lhe stresses do not

exhibit a 1/;r singularity the stress intensity factor Kti p is undefined, i.e. it
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either becomes zero or infinite.

Solutions for finite--length cracks normal to and terminating at a

bimaterial interface have been derived by Krapkov [25], using an asymptotic

Weiner-Hopf technique, and Cook and Erdogan [26], who formulated a wedge

problem solved by a Mellin transformation. The strength of the stress

singularity determined by these [25,26] analyses follows trends similar to the

Zak and Williams semi-infinite crack solution [24]. Additionally, Cook and

Erdogan [26] determined the stress distributions in the cracked bimaterial

plate.

Hiltnn and Sih [27] and later Cook and Erdogan [26] investigate

problems of cracks terminating near (not touching) and normal to a bimaterial

interface. Hilton and Sih, using integral transform methods, solve the

symmetric problem of a Griffith crack lying in a finite width strip which is

bounded at equal distances from each crack tip by a second material. The

crack is normal to the bimaterial interfaces. This geometry is intended to

represent a partially cracked layer in a laminated composite. Cook and

Erdogan [26] again use a wedge solution method to consider the unsymmetrical

problem of a finite length crack normal to the interface of a bimaterial plate.

Although the geometry of these two problems [26,27] is different, the essential

features of the solutions are the same. As the crack approaches the

bimaterial interface, the stresses still obey a l/r singularity so that the

stress intensity factor Kti p is suitably defined. The magnitude of Ktip,

however, is dependent upon the elastic properties of the two plates. In a

manner similar to the particulate/crack tip interaction results discussed in

§2.2.2.2, if E1 /E 2 is greater than unity Kti p increases (compared to Kti p for a

similar cracked homogeneous plate) while if E1 /E 2 is less than unity Kti p
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decreases.

These results from the problems of a crack approaching and of a crack

touching a bimaterial interface suggest that part of the toughening of fiber-

reinforced ceramics may be due to the fiber/crack tip interaction discussed

above. However, none of these works [24-27] specifically address the

toughening issue for a fiber-reinforced ceramic. A more accurate study

requires the consideration of the local periodic arrangement of the fibers and

the imperfect bonding between fiber and matrix, as a crack moves through the

composite.

2.2.3 Crack-Bowing Models

In 1970 Lange [281 observed that a crack front tends to increase its

length by bowing between inhomogeneities in a brittle material. Based on

these observations, the concept of a crack front possessing line energy is

postulated. Lange theorizes that this bowing increases the line energy

(fracture surface energy) of the crack and thus causes an increase in the

toughness of the material, in a manner similar to Orowan's dislocation bowing

model. The increase in fracture energy is found to be inversely proportional

to the inclusion spacing. Evans [29] considers this bowing in more detail and

allows the crack front to adopt a semi-circular or semi-elliptical crack front

between inclusions. The toughening is estimated using a stress analysis of an

isolated circular or elliptical crack under a uniform (averaged) stress. For

brittle particulate-reinforced brittle materials, Evans' calculations [291 indicate

that crack bowing is a major contributor to increased toughness. However,

predicted toughness values from this model are reasonably near experimentally

observed values only for systems reinforced with small volume fractions of

brittle particulates. Evans assumes the obstacles are impenetrable and
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suggests that obstacle penetration at higher volume fractions accounts for the

experimentally observed maximum in the relationship between toughness and

volume fraction of reinforcement, which is not predicted nor can be accounted

for by the model.

Green, Nicholson and Embury [30] modify Evans' crack-bowing model [29]

to account for penetrable obstacles, obstacle shape and crack interactions.

Even with these modifications, however, the model is still largely unsuccessful,

i.e., it is only successful in predicting toughness increases for systems

reinforced with small volume fractions of brittle particulates.

Recently (1987) Rose [31] introduced a crack-bowing model significantly

different from previous models [28-30]. Penetrable obstacles are assumed to

toughen the material by inducing closure tractions on the bowed portion of

the crack. These closure tractions are modeled as distributed springs acting

between the crack faces (from Rose [161) in the bowing region. The stiffness

of the reinforcing springs and the depth of the bow (at the critical breakaway

position) are related to penetrability of the obstacles, i.e., more penetrable

obstacles are modeled with more compliant reinforcing springs and less bowing

depth. Using this model, Rose was largely successful [31] in matching earlier

experimental data of Lange and Radford [32] for an alumina/epoxy system.

Rose's model also predicts a maximum in the relationship between toughness

and volume fraction of obstacles, matching the trends observed in experiments

(30,321.

Of the bowing models mentioned above [28-31], Rose's model [31] is the

only analysis that accurately predicts toughness values and trends observed

in experiment. This suggests that the line energy formulation adopted in the

other models [28-301 is too simplistic. Interestingly, the formulation of Rose's
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successful bowing model actually reduce it to a small-scale bridging problem,

very much like the model presented by Budiansky and Amazigo [151. Like the

BA bridging model [15], Rose's bowing model is based on a fracture mechanics

formulation such that it reveals the nature of Kti p in a comprehensive manner.

2.2.4 Analytical Summary

It should be recognized that most of the models surveyed above analyze

one mechanism, which is assumed decoupled from other mechanisms, of the

crack propagation. Neglect of the coupled mechanisms, for example, partially

explains why the bowing models based only on the line energy concept [28-30]

are generally inaccurate for predictive purposes while Rose's bowing model

[31], which considers the accompanying crack bridging, is more successful.

Thus, a more accurate fiber-toughening model for predicting composite

response should consider all important mechanisms, including the bridging,

bowing and interaction toughening effects.

It should be noted, however, that as shown in the idealized sequence

depicted in Fig. 1.2, the crack bowing/breakaway necessary for crack

propagation actually results from interaction between the crack front and

stiffer fibers. This strong interplay between crack-tip/fiber interaction, crack

bowing, crack bridging and ultimately, crack propagation, demonstrates the

importance of considering the toughening mechanisms as coupled.
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3. ANALYSIS OF STEADY-STATE FIBER PULLOUT

As seen in the previous chapters, steady-state crack bridging is a

dominant toughening mechanism in fiber-reinforced ceramics. The bridging

process, in turn, is controlled by fiber pullout. Thus understanding of the

mechanics of fiber pullout is required in any consideration of crack bridging.

In the steady-state fiber-bridging models surveyed in Chapter 2, all of the

fiber pullout models proposed are based on the hypothesis of an interfacial

shear stress that is constant in the sliding region and zero elsewhere.

Although this assumption renders a reasonably approximate overall pullout

response, the basic underlying pullout mechanisms are not clearly described.

In this chapter, the mechanics of fiber pullout in the steady-state region of a

bridged crack is investigated in a more complete manner.

For a long bridged crack the crack opening displacement far from the

crack tip asymptotically approaches a steady-state equilibrium value 2v.,

which is the separation when the matrix is completely failed. Thus, the crack

opening 2v o results when the net force carried by the bridging fibers

balances the remote applied force. Subsequently, in the steady-state fiber

bridging region the resulting crack surfaces are parallel and straight (in the

smeared-out global/structural scale) such that the pullout forces F on all

bridging fibers are identical. Figure 3.a illustrates a steady-state bridged

crack, including the steady-state and crack-tip gradient bridging regions.

Figure 3.1b shows a single two-dimensional "unit cell", containing a bridging

fiber and the surrounding matrix, from the steady-state region of the crack.

We desire a simple, but accurate general two-dimensional pullout force-

relative displacement relationship for modeling the steady-state bridging

region of a long bridged crack for use in the analysis of fiber toughening
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mechanisms presented in Chapter 4. This chapter presents, in order, a finite

element simulation of steady-state fiber pullout, two basic two-dimensional

elasticity solutions governing the dominant mechanisms of steady-state fiber

pullout, and a straightforward application of these elasticity solutions in a

mechanics-of-materials approximation of the pullout process.

3.1 FINITE ELEMENT SIMULATION OF STEADY-STATE FIBER PULLOUT

Figures 3.2 and 3.3, which represent one symmetric half of the unit cell

of Fig. 3.1, indicate the steady-state fiber pullout problem considered and

show a simple fir.ite element model initially used to investigate the fiber

pullout. In Fig. 3.2, the fiber/matrix interface, which is along x = 0, is closed

but frictionally slipping over some region. The model of Fig. 3.3 contains

discrete fiber and matrix portions connected by a frictional interface to

simulate this slipping. The fiber and matrix regions consist of standard

eight-node isoparimetric continuum elements under a plane strain condition.

One-dimensional interface line elements capable of open/closed contact behavior

and stick/frictional slip response (when closed) are used to model the

fiber/matrix interface. The interface elements are preloaded by a compressive

stress oi (o) such that they are initially closed and sticking. This interface

preload condition is described by a nominal interfacial shear stress tilo) given

by

Ti (0) : - ( 0 )  (3.1)

where p is the interface friction coefficient and oi ( ° ) is the initial interface

compression. The boundary conditions shown in Fig. 3.2 result from the

periodicity of the fibers and symmetry within the unit cell. These boundary
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conditions are shown in Fig. 3.3 at only a few edge nodes for illustration.

The ABAQUS finite element program installed on a CONVEX XP-1 computer and

a SUN 4-280 workstation was used to perform the fiber pullout analysis.

Figures 3.4a and 3.4b show typical results from the finite element

pullout analysis and illustrate the variation of the interfacial sh. ar stress ri

for the cases Ef/E. = 1 and Ef/E. = 16, respectively. Figure 3.5 idealizes the

variation of t i as consisting of 3 regions and 2 transition points. Relative

fiber-matrix slipping occurs in 0 5 y _5 L (region 1) but not above the

sticking point y = L in regions 2 and 3. In region 2 (L < y 5 H), ti decays

with y until isostrain holds above y = H in region 3. In the asymptotic

regions around y = 0 and y = L, free edge [33,34] and mode II crack tip

singularities [35-39] exist but are not revealed by this simple displacement

based finite element method. Note that in Fig. 3.4 and in the idealization of

Fig. 3.5 the interfacial shear stress ri does not follow the simple constant

profile hypothesized in the earlier pullout analyses [12-17].

3.2 ANALYTICAL DESCRIPTION OF STEADY-STATE FIBER PULLOUT

The overall steady-state fiber pullout behavior is dominated by the

interfacial shear stress in the slipping and sticking regions such that the

small singular regions depicted in Fig. 3.5 can be neglected for simplicity.

Then, the progression of t1 throughout the pullout process can be idealized as

shown in Fig. 3.6. Note that in Fig. 3.6 the additional simplification

Ti = Ti ( ° )  at y = L (3.2)

is made. As seen in Fig. 3.7, the finite element results for Ef/E 3 = 1 support

1 Hibbit, Karlsson and Sorensen, Inc., Providence, RI.
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this simplification, as do the results for Ef/E. = 3 and Ef/E* = 16 where the

deviation of ti at y = L from the nominal shear stress ri ( ° ) is small.

Specifically, Eq. (3.2) should be accurate for the case of a ceramic matrix

composite, where typically Ef/E m _< 5. Also note that the idealization of Fig.

3.6 includes the well known stick/slip behavior, and that ti varies in the

slipping region and is non-zero in a portion of the sticking region -- realistic

aspects missing from the earlier analyses [12-17]. Elasticity solutions

governing the simplified variation of ti depicted in Fig. 3.6 are presented

below. A mechanics-of-materials approximation of the pullout force-relative

crack opening displacement relationship, based on the simplified elasticity

description of the interfacial shear stress, is also given.

3.2.1 Slipping Region Elasticity Problem Formulation

An approximate equilibrium argument presented in Appendix 1 as well as

the finite element results depicted in Figs. 3.4a and 3.4b suggest that ti

behaves exponentially in the slipping region. We then assume the stresses in

the fiber and matrix behave exponential in y and are each given by separable

Airy stress functions of the form

01 = exp[a(y - L)lf(x), (3.3)

where a is a constant controlling the exponential stress behavior in y.

Equilibrium and compatibility equations require [40] that 01 satisfy the

biharmonic equation

VIO, = 0

which yields the general solution for f(x),

f(x) = (C1 + C2x)cos(ax) + (C3 + C4x)sin(ax), (3.4)
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where the Ci are constants controlling the stress variation in x. The

periodicity of f(x) is required owing to the periodic boundary conditions of

the unit cell. Note that a controls not only the exponential stress behavior in

y, but also the stress variation in x. The stresses and plane strain

displacements are determined as

GXX = a 2exp[a(y - L)]{[C 3 + C4 x]sin(ax) + [C1 + C2 x]cos(ax)} (3.5)

Y= aexp[a(y - L)]{[-2C2 - C3 a - C4 ax]sin(cLx) + [2C4 - Cla - C2ax]cos(ax)}

,= aexp[a(y - L)]{[C 4 - C1a. - C 2 ax]sin(ax) + [C2 + C3 a + C4ax]cos(ax)}

and

u x = [(1 + v)/Elexp[a(y - L)]{[(1 - 2v)C 4 + Cla + C2 ax]sin(ax) +

[(1 - 2v)C 2 - C3a - C4ax]cos(ax)}
(3.6)

uY = [(1 + v)/EIexp[a(y - L)]([2(1 - v)C2 + C3 a + C4cx]sin(ax) +

[2(1 - v)C 4 + Cla + C2(ax]cos(ax)).

In this manner stress functions for the fiber and matrix yield 10

unknowns: af and C1 through C4 for the fiber and, similarly, a. and D1

through D4 for the matrix. The boundary conditions at the fiber and matrix

edges of the half cell of Fig. 3.2 are

OXY = 0 at x = xf
(3.7a)

Oy ( a) = 0 at x = x,

and
u, (M) = 0 at x = xf

(3.7b)
u ( 0 ) = 0 at x = x,
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which arise from symmetry considerations as mentioned above. The constant

displacements ux at the fiber and matrix edges are zero since u. -- > 0 for

large y. Continuity across the interface requires

Oxx(
f) = Oxx (0)

Gf = a=) at x = 0 (3.8)

UX(f) = Ux

while for a frictional slip problem,

oxy = IGXX at x = 0 (3.9)

where I1 is the friction coefficient. The shear and normal stresses in Eq. (3.9)

have the same sign because OXX is compressive at the interface and oxy is

negative for the fiber to pull out. Additionally, for the conditions in Eq. (3.8)

to be independent of y,

af = a (3.10)

must also hold. Finally, we specify the magnitude of the stress by

axy(O,L) = -ci (0) (3.11)

where the sign on Tia° ) is negative so that the fiber pulls out. This equation

results from the simplification made in Eq. (3.2). Equation (3.11) and Eq. (3.9)

also specify the compressive residual normal stress at the interface, e.g., Eq.

(3.1). Then, the conditions (3.7) through (3.11) supply 10 equations for the 10

unknowns.

Solving for the 10 unknowns then yields the stresses, strains and

displacements in the fiber and matrix, as well as the exponential constants a.
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Only the homogeneous case where the fiber and matrix have the same

properties can be easily solved by hand. Inhomogeneous cases can be solved

numerically in a straightforward manner.

3.2.2 Sticking Region Elasticity Problem Formulation

Related shear lag solutions [42,43] and finite element results [43,44], as

well as the current finite element results depicted in Fig. 3.4, indicate that ri

decays exponentially in the sticking region. Thus, we again begin with Airy

stress functions of the form

't = exp[-T(y - L)]g(x) (3.12)

and find that g(x) is identical to that of f(x) in Eq. (3.4), except for the

change in constant from a to '. Subsequently, stresses and displacements are

then similar to Eqs. (3.5) and (3.6). Additionally, the boundary and continuity

conditions are identical except the additional interface continuity condition

uy ( f ) = uY(M) at x = 0 (3.13)

replaces the frictional slip condition (3.9), decoupling the interfacial normal

and shear stresses. The resulting system of 10 equations and 10 unknowns is

again easily solved numerically.

3.2.3 Relationship Between the Pullout Force and Crack Opening Displacement

To derive a simple pullout force-relative displacement relation the

pullout process and interfacial shear stress are idealized as shown in Fig. 3.6.

Figure 3.8 shows a free body diagram of the half cell where v. is the relative

fiber pullout displacement, 6 is the average matrix extension and Tj(
° ) is the

magnitude of the interfacial shear stress at the sticking point and is given by

Eq. (3.1). In the slipping configuration the stresses in the fiber and matrix
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are

o.,A. = 0 at y = 0 (3.14)

afAr = F

where A, and Af are the area of the fiber and matrix per unit cell and F is

the pullout force on the fiber. Similarly, in the slipping region, 0 5 y 5 L,

ri(y) = exp[a(y - L)]

a.A, = [2trj(O)/a}{exp[aL] - exp[a(L - y)]} (3.15a)

UfAf = F - {2ti(°)/a{exp[aL] - exp[a(L - y)]},

and in the sticking region, L 5 y 5 H,

tci(y) = exp[-Y(y - L)]

crA = {2ti()/a}{exp[aL] - 1} + {2Ti(o)/T1 - exp[a(L - y)]} (3.15b)

ofAf = F - {2Tj(O)/a){exp[aL] - 1} - {2rj(O)/Y}{1 - exp[a(L - y)I},

and in the isostrain region, y _ H,

ti(Y) = 0

CM(o)A. = {2Ti(O)/a}{exp[aL] - 1} + [2 i(°)/T) (3.15c)

oG(f)Af = F - {2ti(O)/a}{exp[aL] - U- {21j(°)/Y}

where a.(O) and of(O) are the remote fiber and matrix stresses satisfying the

isostrain condition o.(O)/EM = of(O)/E and H is large enough that exp[LY - HY]

0. From the stresses, the displacements at y = 0 are (for a large H),

8{(A.E.)/(2-i(O))} = (1/T)(H - L - I/Y) - (1/a)(1/a - H)(exp[aL] - 1)

(v o + 8{(AfEf)/(2tj(O))} = (FH)/(2tj ( ° ) ) - (1/Y)(H - L - 1/Y) + (3.16)

(1/a)(1/a - H)(exp[aL] - 1)
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so that the relative fiber pullout is

voAfEf = FH - 2r(o)P{(1/I)(H - L - 1/v) + (1/a)(1/a - H)(exp[aL] - 1)} (3.17)

where

a = 1 + EfAf/EA..

Now, at y = H, the isostrain condition and Eq. (3.15c) yield the pullout force

F = 2tci(o)({(1/Y) + (1/a)(exp[aL] - 1)1 (3.18)

in terms of L or

L (1/a)log[(aF)/(2rj(o)13) - (a/Y) + 1). (3.19)

Now, using (3.18) in (3.17) yields

v o = {(2ti(O)13)/(AeEf)}{L + 1/Y} +
(3.20)

{(2tci(°))/(oaAfEf)}{(1/a)(exp[aL] - 1) - L)

so that Eqs. (3.19) and (3.20) yield the slipping pullout force-relative

displacement relation parameterized by the slip length L. Additionally, Eq.

(3.18) yields

aO/i (O) = 22/v + (25/a)(exp[aL] - 1) (3.21)

as a nondimensional measure of the smeared-out (isostrain) composite stress

defined as

c c = FVf/Af. (3.22)

Sliding, however, does not occur if the magnitude of the maximum

29



interfacial shear stress t i is less than Ti('). In this case L = 0 and the

sticking pullout force-relative displacement relation

F = EfAfvo " (3.23)

applies when Jmax(Ti)l < -c ( ) . The critical average composite stress to cause

Elipping is then

TC(c ) = 2tc(°)VfI3/(Afj). (3.24)

Thus when ac 5 c(c) the pullout force-relative crack opening displacement

(F - v,) relationship is linear (Eq. (3.23)) but once slipping starts and ac >

ac(c) the relation becomes nonlinear (Eqs. (3.19) and (3.20)).

3.3 NUMERICAL RESULTS AND DISCUSSION

Substitution of the stresses and displacements of Eqs. (3.5) and (3.6)

into the slipping and sticking boundary and interface conditions yields a

system of ten equations for each probiem. Careful algebraic manipulation of

only a few of the resulting equations yields a single transcendental equation

each for the constants a and v. The values of a and V which satisfy these

equations are found numerically.

3.3.1 Slipping Region

The numerical solutions in the slipping region reveal that a is

independent of ri (o) and depends only on the ratio Ef/E., not only the actual

stiffnesses of the fiber and matrix. Additionally a depends on the fiber and

matrix Poisson's ratios vf and v., the friction coefficient p and the width of the

unit cell. The constant a can be normalized, however, with respect to p and

the unit cell width (xf - x.).

30



Figures 3.9a through 3.9c illustrate the dependence of a on fiber volume

fraction, the ratio Ef/E. and v when v. = V.. Figure 3.10 shows the variation

of a with volume fraction when Ef/E. = 3 and Ef/E. = 1/3 and indicates the

inversion symmetry of these results about a = 0 and Vf = 50%. The effect of

different Poisson's ratios on a when Ef/E. = 1 is shown in Fig. 3.11. Note the

inversion symmetry also evident in Fig. 3.11.

Figure 3.12 clearly summarizes the dependence cf a on material

properties for Vf = 33%. For the special case vf = ,, a is positive, zero, or

negative, and correspondingly, from Eq. (3.5), ri in the slipping region either

increases exponentially, remains constant, or decrease exponentially when Ef/Em

is less than, equal to, or greater than unity, respectively. Recall, however, r i

is always equal to ri(o) at the sticking point y = L. Then, when a is positive

(Ef > E., vf 5< q.), i is greater than ti() in the slipping region, and, due to

the frictional coupling between interfacial shear and normal stresses

(expressed in Eq. (3.9)), the interface compression in the slipping region is

greater than the initial compressive preload ai ( o). Or, simply, when Ef > E.

and vf 5 v., the compression at the slipping interface increases (relative to

oi (o)) during fiber pullout. Similarly, the slipping interface compression either

decreases or remains constant during fiber pullout for Ef/E less than or

equal to unity, respectively (when vf = ,). Therefore, Fig. 3.12 also describes

the tendency of the slipping interface to open (debond) during pullout

depending upon whether a is positive or negative -- for a typical composite

where Ef > E. and vf _< v., a is positive and the slipping interface remains

closed.

Figure 3.13 compares finite element predictions for a with the analytical

solution derived above. In all Figs. 3.13a through 3.13c agreement is good
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except at high and low fiber volume fractions, where the finite element mesh

becomes excessively distorted. This distortion is caused by excessive element

aspect ratios in the small volume fraction region (i.e., fiber region for small

Vf, matrix region for large Vf) and is caused by the current simple mesh

definition. The good correlation illustrated in Fig. 3.13 indicates that the

finite element analysis accurately models the pullout for reasonable volume

fractions.

The stresses and displacement given by Eqs. (3.5) and (3.6) when Ef/E.

= 3, v = v. = 0.25 and Vf = 33% are shown in Figs. 3.14a through 3.14b. At

this relatively low stiffness ratio Ef/E., a is small. Subsequently, from Eq.

(3.5) the change of ti along the slipping interface is small and variation in x

of all stresses and strains is nearly linear. Additionally oG and uy are

discontinuous across the interface, as expected. Note that the stresses and

strains of Fig. 3.14, however, are only representative of the above solution;

the complete pullout solution for the slipping region is obtained by adding

various constant isostrain stress states to the obtained solution.

3.3.2 Sticking Region

Because in the sticking region the shear and normal stresses at the

interface uncouple (Eq. (3.13)), the decay exponent - depends only on the

relative difference (vf - %) and not on the actual values 4 and V. Note that 7

can be normalized with respect to geometry; additionally, Y is independent of

Ti (O) and the friction coefficient p, as expected.

Figure 3.15 illustrates the dependence of Y on volume fraction and Ef/E*

when vf = v. When E,/E, = 1 and 4 = i, the normalized V = T. Note that T

becomes large for Ef/E. large and Vf large. Figure 3.16 shows the variation

of T with volume fraction when Ef/E. = 3 and Ef/E. = 1/3 and indicates the
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symmetry of these results about Vf = 50%. The effect of the difference (vf -

v.) when Ef/E = 1 is shown in Fig. 3.17. Again note the symmetry exhibited

in Fig. 3.17. Figure 3.18 summarizes the dependence of Y on material

properties when Vf = 33%. Note that in Fig. 3.18, Y > 0, indicating that tu

always decays above the sticking point, i.e., isostrain is always obtained for

large y.

Figure 3.19 compares the finite element prediction for Y with the

analytical solution. In Figs. 3.19a - 3 .19c agreement is good except at high

and low volume fractions, indicating the ability of the finite element model to

simulate pullout at reasonable volume fractions.

Stresses and displacements in the sticking region when Ef/E. = 3,

vf = = 0.25 and Vf = 33% are shown in Figs. 3.20a - 3.20c. Only ,y, is

discontinuous across the interface, as expected. Comparing Fig. 3.20 to Fig.

3.14 reveals the effect of a higher exponential constant (normalized Y = 1.92

vs. normalized a = 0.29) in Eqs. (3.5) and (3.6); stresses and displacements

vary in a more harmonic manner in x when the exponent is higher. Again,

this oscillatory behavior in x is given by Eq. (3.4). Additionally, as with the

slipping solution, the complete pullout solution in the sticking region is

obtained by adding constant isostrain stress states to the solution presented.

3.3.3 Steady-State Fiber Pullout Response

The steady-state fiber pullout force-relative displacement relation

derived in §3.2.3 and the interfacial shear stress variation determined in §3.2.1

and §3.2.2 are used in conjunction to predict the fiber pullout response.

Figure 3.21 illustrates the predicted fiber pullout response and how it varies

with material properties and friction coefficient j. In Fig. 3.21a the linear

sticking response given by Eq. (3.23) can be seen for Ef/E. = 16 and oc/t 1'u,
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:5 5.9. Figure 3.21b illustrates the changes in friction coefficient have small

effect on the pullout response. Note that in all of these figures the composite

stress a. is normalized by ci (o). This nondimensionalization is made possible

by the assumption of Eq. (3.2) that ti is always equal to ti (O) at the sticking

point.

Previous pullout models [12-17] have assumed an interfacial shear stress

that is constant in the slipping region and zero elsewhere. These models do

not predict stick/slip behavior nor do they provide any analytical basis for

the assumed ti. In Fig. 3.22, the predictions from the constant ti model are

compared with both the model derived above and the finite element results.

The correlation between finite element results and current predictions are

good, indicating the accuracy of the mechanics-of-materials approach used in

deriving the pullout force-relative displacement relation. The earlier constant

i: model is reasonably accurate in an average sense, but it does not predict

the realistic detailed stick/slip behavior.

Figure 3.23 shows a much coarser mesh used to model the pullout anti

Fig. 3.24 compares the predictions from this coarse model and the fine model

depicted in Fig. 3.3. Note that the coarse model is still able to accurately

predict the overall pullout response. These observations lend confidence in

the ability of the finite element method to represent the overall pullout

behavior. The coarse model, however, does not accurately reveal the variation

of ti.

3.3.4 Additional Remarks

The above sticking and slipping region solutions are sufficient to derive

an approximate pullout force-relative displacement relation. The asymptotic

singular solutions at the sticking point and at the free edge are necessary,
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however, to completely describe the pullout. Specifically, the asymptotic

solution at y = 0 is needed to satisfy the boundary conditions there and the

asymptotic solution at y = L will allow connection between the different

solutions in the slipping and sticking region.

Additionally, the asymptotic solution and the matching conditions at the

sticking point should reveal ti (o). Realistically, ri (O) should vary with L. In

the numerical calculations made here and in Chapter 4, however, the

simplification of Eq. (3.1), i.e., r i (0) .jj1.(0), where () is the applied

residual compression at the interface (from thermal cooling) is used. The

finite element results of Fig. 3.7 and Fig. 3.21 indicate that this is a

reasonably accurate simplification for a ceramic fiber reinforced ceramic matrix

composite, where Ef/E, is typically less than 5.
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4. COMPOSITE TOUGHENING

The toughening models and fracture mechanics solutions reviewed in

Chapter 2 address various aspects of the many toughening mechanisms of

fiber-reinforced ceramic composites. To solve the complex problems

considered, however, all of the analyses need to include simplifying

assumptions -- some of which eliminate important realistic aspects of the

composite toughening. For example, the bimaterial fracture mechanics solutions

do not represent the periodic fibers in a composite, and the steady-state

fiber-bridging models do not consider the fiber/matrix inhomogeneity at the

crack tip. Additionally, the bridging models employ very simplified steady-

state fiber pullout behavior to represent the bridging fibers along the entire

crack face, including the high-gradient crack-tip region.

This chapter presents a finite element analysis employed to more

accurately model some of the complex toughening phenomena involved in fiber-

reinforced ceramic composites. The present two-dimensional plane strain finite

element toughening ':nalysis utilizes the fiber pullout mechanics results

derived in Chapter 3 to accurately represent pullout in the steady-state

region of the bridged crack and includes discrete fiber and matrix segments

near the crack tip to directly model pullout and crack-tip/fiber interactions in

the high-gradient crack-tip regions. In order to investigate both crack

bridging and crack-tip/fiber interaction toughening mechanisms, the finite

element model simulates both fully bridged and fully unbridged crack

configurations. The finite element model generation and analysis were

performed using the ABAQUS program run on a CONVEX XP-l computer and

SUN 4-280 workstation.
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4.1 ANALYTICAL METHOD

The two-dimensional finite element model represents a cracked

unidirectional fiber composite plate, with the crack perpendicular to the

fibers, as shown in Fig. 4.1. The finite element model of the plate is composed

of three primary regions, also illustrated in Fig. 4.1: the remote region at the

structural scale, a local region at the discrete micromechanics scale (i.e., the

fiber-matrix scale) and a singular region at the scale of the asymptotic crack

tip singular field. The relative sizes of the three regions are approximately

determined by several factors: the size of the plate relative to the crack

length, the approximate size of the K-controlled domain (when the crack is

unbridged) relative to the fiber size, and the size of the crack-tip gradient

region (when the crack is bridged) relative to the fiber size. The steady-

state bridging behavior derived in Chapter 3 is used to model bridging in the

global region while the micromechanics region models the bridging directly

using frictional interface elements. The fiber volume fraction Vf is 1/3. The

entire model is strictly two-dimensional in that three-dimensional fiber packing

array dependent effects are not considered. For example, mechanical

composite properties are calculated based on simple one-dimensional

derivations 'and residual compression at the interface is implemented in a

manner that ignores the three-dimension residual stress field that exists in a

real composite. Consistency within the model requires these simplifications.

4.1.1 Finite Element Model - Global Region

Symmetry within a cracked plate allows consideration of one-quarter of

the plate. Figure 4.2 shows the global finite element mesh, which models the

steady-state region of the bridged crack and represents the majority of the

quarter-plate. The crack tip is at the origin x = y = 0 and the crack face
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lies along y = 0, x < 0. The size of the global mesh is determined by two

factors. First, the half crack length a o is determined such that the size of

the K-controlled domain, given roughly by a./20, is approximately equal to the

center-to-center fiber spacing d,, in order that the local crack-tip/fiber

interaction can be observed. Second, the plate size satisfies a./W = 10, where

the total crack length is 2a o and the total plate width is 2W, so that finite

width effects are negligible. The global mesh consists entirely of eight-node

and six-node isoparimetric elements. The vacant rectangle around the crack

tip in Fig. 4.2 is actually filled by the micromechanics and singular region

meshes, as idealized in Fig. 4.1. Boundary conditions on the global mesh are

standard symmetry constraints (constant normal displacement) on the sides

and bottom (excepting the crack face) and applied stress ac along the top of

the plate. The displacement boundary conditions are indicated in Fig. 4.2 at

only a few nodes for brevity. Orthotropic material properties in the

homogeneous global region are calculated from the isotropic fiber (Vf = 1/3)

and matrix properties using simple one-dimensional rule of mixtures formulas

and the Halpin-Tsai equations for transverse properties [45].

Bridging elements reinforce the crack face in the global region. These

bridging elements are given appropriate linear/nonlinear effective material

properties described by Eq. (3.23) (sticking pullout relation) and Eqs. (3.19 -

3.20) (slipping pullout relation) and are implemented in such a manner that

they exhibit the correct steady-state pullout force-relative displacement

behavior derived in Chapter 3. Thus, the crack face in the global region

"appears" to the crack tip as steady-state bridged. However, the bridging

elements can be given small (zero) stiffness, if desired, to model a crack

which is unbridged in the global region.
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4.1.2 Finite Element Model - Micromechanics Region

Figure 4.3 shows the finite element mesh in the discrete miuromechanics

region around the crack tip. This extensive mesh directly models the fiber

pullout and crack-tip/fiber interaction in the high-gradient crack-tip region.

In the model, do=- 2df, where do is the matrix region width and df is the

fiber width (indicated in Fig. 4.3) such that the fiber volume fraction Vf is

1/3. Additionally, note that do = do + df, where do is the center-to-center

fiber spacing. The crack tip is at the origin x = y = 0 and the cracked

region is along y = 0 for x < 0. Following the results of the steady-state

crack-bridging models [12-17] reviewed in §2.2.1, the discrete micromechanics

mesh extends approximately lOdf on each side of the crack tip in order that it

contains the high-gradient crack-tip region of the bridged crack. The mesh

of Fig. 4.3 fills the vacant portion of the global mesh depicted in Fig. 4.2. A

singular region mesh in turn occupies the empty rectangle of the discrete

mesh and defines the exact position of the crack tip. Eight-node and six-node

isoparimetric elements are used to define the discrete fiber and matrix"

regions. The two-dimensional fiber and matrix elements that have edges on

the fiber/matrix interface are connected together by one-dimensional interface

elements. These line elements are capable of open/closed contact behavior and

stick/Coulombic frictional slip response (when closed), thus allowing relative

sliding between the fiber and matrix. The interface edges of the fiber and

matrix elements are loaded by identical negative pressures to compress the

interface. The applied interface compressive preload, oi (o), and the friction

coefficient p are related to the nominal interfacial shear stress ui(o) by Eq.

(3.1) of Chapter 3. This loading technique produces a line of compression

along the interface (necessary for Coulombic friction) without introducing any
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residual stresses in the fiber and matrix. In this manner the crack tip stress

field and the toughening effects can be observed without the complications

introduced by residual stress fields. Displacement boundary conditions shown

at a few nodes (for brevity) along the bottom of the discrete region of Fig.

4.3 apply at every bottom edge node in the uncracked (x > 0) side and at the

bridging fiber bottoms in the cracked (x < 0) side of the mesh. The bottom

nodes of the fiber elements in the cracked side of the discrete mesh can be

released, if desired, to model a crack which is unbridged in the discrete

region.

The many fiber/matrix regions require a consistent terminology to

describe locations and phenomena within the micromechanics mesh. In this

analysis, "downstream" and "upstream" refer to the cracked (x < 0) and

uncracked (x > 0) sides of the crack tip, respectively. The fiber immediately

ahead of the crack tip is the "upstream fiber" or "first upstream fiber", and

the fiber immediately behind the crack tip is the "downstream fiber" or "first

downstream fiber". The next upstream fiber is the "second upstream fiber",

etc. The "cracked matrix region" is bounded by the first upstream and

downstream fibers, and the "upstream matrix region" or the "first upstream

matrix region" is bounded by the first and second upstream fibers. Similarly,

the "downstream matrix region" or "first downstream matrix region" is

bounded by the first and second downstream fibers. This terminology will be

used in later sections to describe the locations of fiber slipping, stresses, etc.

4.1.3 Finite Element Model - Singular Region

Figure 4.4a shows a typical singular region mesh that surrounds the

crack tip at x = y = 0 and resides in the empty rectangle of the cracked

matrix region of the micromechanics mesh of Fig. 4.3. The crack face lies

40



along y = 0 for x < 0. The size of the singular mesh roughly equals the size

of the K-controlled domain, given approximately by a,/20 when the crack is

unbridged, i.e, the size of the K-field is on the order of the fiber spacing.

In the mesh of Fig. 4.4a, the crack tip is halfway between the two bounding

fibers. If dm is the distance between the upstream and downstream inner

fiber edges (in this model the width of the singular mesh) and dtip is the

distance from the crack tip to the downstream fiber inner edge, the mesh of

Fig. 4.4a has dtip/d. = 50%. In this manner other meshes with different

values of dtip/d. can be used to investigate the effect of crack-tip position.

Specifically, Figs 4.4b through 4.4e illustrate other singular meshes used in

the analysis which include dtip/d m values of 16.7%, 33.3%, 66.7% and 83.3%,

respectively. Note the origin lies at the crack tip in all meshes. Displacement

boundary conditions are also indicated in Figs. 4.4a through 4.4e at a few of

the bottom nodes (for brevity) in the uncracked (x > 0) side of the mesh. All

of the singular meshes of Fig. 4.4 are based on eight-node isoparimetric

elements arranged so that the "quarter-point" crack tip elements exhibit the

1/ ;r stress singularity [46,47]. The surrounding elements are sized

appropriately to imply a singularity at the crack tip.

4.1.4 Toughening Characterization

In order to determine Kti p when the cracked composite plate is loaded,

J-integral [48] evaluations, using the virtual crack extension method [49,50],

are performed along six different concentric paths around the crack tip in the

singular mesh. Within the singular region mesh the crack face is traction free

and infinitesimal crack growth is self-similar such that, according to theory

[48,51,52], the J-integral should be path independent within this regular

region. In the model, the numerically determined values of J differ only
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slightly depending upon the evaluation path (typically less than a few

percent), thus obeying theory within good numerical precision. The recorded

value of J is Javg, the average of the six crack-tip J-integrals. Additionally,

the crack-tip J-integral (within the singular region) and the crack-growth

energy-release rate, G, are equivalent, due to the path independence of J

within the singular region mesh. Then, the stress intensity factor at the

crack tip in the matrix is determined from the plane strain relation

G = Javg = (1 - V.2 )K2 tiP/EM (4.1)

where E. and v. are the matrix modulus and Poisson's ratio, respectively.

As discussed in §2.2.1, the bridging model section of Chapter 2, the

crack-tip stress intensity factor Kti p of a steady-state bridged crack is

independent of the total crack length. This crack-length independence is a

result of the force equilibrium in the steady-state bridging region, depicted in

Fig. 3.8 of Chapter 3, i.e., the remote applied load is balanced entirely by the

fiber load in the steady-state region of a long bridged crack. Effectively,

then, the steady-state bridging region of the crack does not induce any crack

tip loading. Rather, the Kti is induced by the local, high-gradient (i.e., non-

steady-state) region of the crack near the crack tip. The size of the

controlling, gradient region is a function of the fiber size, not the total crack

length, as shown in the steady-state bridging models [12-17] of §2.2.1.

Therefore, it follows that when a crack is steady-state bridged, an appropriate

description of toughening should be independent of the total crack length but

related to the fiber size. In the analysis, the toughening in the bridged

model is described by the steady-state bridged toughening parameter B..,

given by
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ass = Ktip/Kf, (4.2)

where Kti p is the actual crack-tip stress intensity factor of Eq. (4.1). The

reference stress intensity factor, Kf, is appropriately related to the fiber size

and is given by

Kf = ac(,itd), (4.3)

where df is the fiber width and c is the remote applied composite stress.

Subsequently, the toughening parameter J3B for a steady-state bridged crack

is independent of the total crack length and related to the fiber size, as

desired.

In an unbridged, cracked fiber composite, however, the crack-tip stress

intensity factor Kti p is induced by the entire crack length. In this case, an

appropriate toughening description should consider the total crack length.

Additionally, the toughening should depend, in some complex manner, upon the

relative scales of the total crack length (which determines the size of the K-

controlled domain) and the fiber size. This second effect can, in this analysis,

be neglected since the model has been specifically sized to generate a

micromechanics (i.e., fiber-size) K-field. Thus, the unbridged toughening

parameter Oub is given by

Oub = Kt ip/Ko, (4.4)

where again Kti p is the actual crack-tip stress intensity factor. The reference

stress intensity factor is now appropriately related to the total crack length

a. by

KO = ocf(nao), (4.5)

43



where c is the remote applied composite stress. Thus, the unbridged

toughening parameter 13ub is related to the total crack length, as desired.

4.1.5 Stresses Related to Crack Propagation

The complex mechanisms involved in crack propagation, particularly in a

fiber-reinforced composite, generally cannot be fully described by one or two

stresses. A conceptual understanding of the propagation process, however,

may be aided by investigation of a few characteristic stresses. Specifically, in

this investigation, crack propagation in the bridged composite is known to be

controlled by successive matrix region fracture and interface

slipping/debonding. Of particular concern to the crack propagation is the

tendency of the upstream fiber to slip/debond, and the upstream matrix to

fracture. Characteristic stresses related to these phenomena are here denoted

as ai(u) and o,(u), for upstream interface and matrix stresses, respectively.

Figure 4.5 indicates specifically where these stresses are determined in the

toughening analyses. As shown in Fig. 4.5, aj(u) is the interface normal stress

on the inner side (downstream side) of the upstream fiber and c0 (u) is the

principle stress in the upstream matrix region (on the upstream side of the

upstream fiber). The matrix stress c*(u) is always the highest principle stress

at its location and is oriented parallel to the fibers (as shown) for the crack

configuration and loading considered in this analysis. The upstream interface

normal stress, aj(u), is non-dimensionalized by the initial interface compressive

preload, oi (o), such that if the ratio ci(u)/Gi( ° ) decreases during loading then

the interface tends to slip/debond. Similarly the non-dimensional ratio

(n(u) /a(0) reveals the stress concentration in the upstream matrix region,

relative to the far-field (isostrain) matrix stress o.(0), and thus describes the

tendency of the upstream matrix region to fracture. In combination, then, the
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stress ratios oi(U)"oi (O) and (u)/a,(O) characterize the crack propagation.

For example, for a bridged crack to propagate it may be required that

oi(u)/oi (a) be small (so the fiber can pullout) and o.(U)/G,(O) be large (so the

upstream matrix region can fracture).

4.1.6 Model Verification

Manipulation of material properties, boundary conditions and loadings in

the fiber toughening modeling (Figs. 4.2 through 4.4) can yield various simple

test cases to verify and check the accuracy of the model. For the toughening

problems considered here, primarily the model must be able to accurately

reveal Kti, under remote and crack face loading, including the effects of local

material heterogeneity. In Table 4.1 the results of several test cases are

summarized and the finite element predictions are compared with available

analytical solutions. External loading refers to the standard configuration of a

remote tensile nominal stress oc applied to the top boundary of the plate.

Internal loading is accomplished by applying either an opening pressure (- c )

Gr a point load P to the crack face. The edge cracked plate is modeled by

removing the symmetry conditions along the left edge of the model. The

bimaterial plate configuration is obtained by retaining the symmetry conditions

and suitably defining element material properties such that the model

represents a crack of length 2a. lying symmetrically between and normal to

two bounding bimaterial interfaces a distance of 2D apart (i.e., a cracked ply

in a laminate). Agreement between the model and analytical solutions is good

for all tests cases, indicating the ability of the model to accurately represent

the crack-tip stress intensity factor Kti p .

Additionally, the finite element model must accurately represent the

steady-state bridged behavior of the crack. Recall that the crack bridging is
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modeled directly in the discrete micromechanics mesh and indirectly, using the

results of Chapter 3, in the steady-state (global) region. Since crack

bridging is modeled as a steady-state pullout in the global mesh region, the

extent of the crack-tip gradient region should be within the discretely

modeled region (i.e. within the micromechanics mesh). Also, the crack opening

displacements in the two regions should join consistently across the

global/discrete boundary. Recall, from Chapter 3, the steady-state fiber

pullout response consists of linear (sticking) and nonlinear (sliding) load-

displacement behavior. Figure 4.6 shows typical crack face profiles for a

linear (no-slip) case when oc/ i °(o = 0.5 for both Ef/E. = 1 and Ef/E. = 4.

Similarly, Fig. 4.7 shows typical crack profiles during nonlinear, large

slip/pullout behavior when ac/ti(°) = 10.0 for both Ef/E. = 1 and Ef/E. = 4.

The crack tip is at x/df = 0 and the micromechanics (i.e., discrete

fiber/matrix) region extends to approximately 10d, downstream from the crack

tip in Figs. 4.6 and 4.7. In Figs. 4.6 and 4.7 the crack opening displacement

appears excessive due to the vertical axis scaling, which has been expanded to

clearly illustrate the global/local transition region. Note that the matrix crack

opening displacement at the fiber/matrix interface is zero in the sticking cases

and non-zero in the slipping cases. In all of these figures the transition of

crack opening displacement between global and local discrete meshes is

consistent and the crack opening displacement approaches the steady-state

value v, quickly within the discrete micromechanics region. These

observations indicate both the appropriate extent of the discrete

micromechanics mesh and the proper transition between the smeared-out

steady-state global region and the directly modeled discrete region. These

results, combined with the test case results above, lend confidence in the
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ability of the current model and analysis to accurately represent the bridging

and fiber/crack-tip interaction of toughening mechanisms under investigation

here.

4.2 NUMERICAL RESULTS AND DISCUSSION

The toughening analyses performed with the above described finite

element model include two configurations: unidirectional ceramic composite

plates with an unbridged and a bridged crack. The unbridged model reveals

the inhomogeneity (or crack-tip/fiber interaction) toughening effects only and

is achieved by removing certain boundary conditions, as described in §4.1.1

and §4.1.2. The bridged model includes the fiber bridging mechanisms. The

unbridged model is perfectly bonded and all constituents are linear-elastic so

that the toughening is load independent. The toughening in the unbridged

model, which includes linear/nonlinear fiber pullout response, c.nversely, is

strongly load dependent. However, under low loads when the bridging fibers

are sticking (i.e., linear fiber-pullout response) toughening in the bridged

model is also independent of load.

In the next sections the toughening effects of various composite

parameters, as well as the remote applied stress oc level, are investigated for

both the bridged and unbridged models. The material and microstructural

parameters include the stiffness ratio Ef/E., crack tip position dtip/d. and

friction coefficient p. The toughening is characterized by the parameters B.,

and Bub, as described in §4.1.4, and stresses relevant to crack propagation are

described by the ratios am(U)/ou( 0) and oi(U)/oi(), as presented in §4.1.5.

4.2.1 Unbridged Model

In the unbridged analyses, the composite toughening is solely due to
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the crack-tip/fiber interactions. Additionally, the toughening is load

independent since the fiber and matrix are perfectly bonded (i.e., nonlinear

fiber/matrix sliding cannot occur) and linear-elastic. The toughening results

are presented in terms of the toughening parameter Bub, as described in

§4.1.4. Recall that 3ub = Ktip/K o , where Ko = ;(nao ) is the crack tip stress

intensity factor that would result if the material were homogeneous. Then, if

Bub is less than unity, Kti p is less than it would be in a homogeneous material,

and the composite is toughened. Also, the interface normal stress ji(u) and

the upstream matrix stress a.(u) are reported, as described in §4.1.5.

4.2.1.1 Toughening

Figure 4.7 summarizes the toughening results of the unbridged analyses

and indicates the variation of Bub with the stiffness ratio Ef/E. and crack tip

position dtip/d . Recall that dtip is the distance of the crack tip from the

inner edge of the downstream fiber and d. is the inner edge-to-edge distance

between the upstream and downstream fibers, as shown in Fig. 4.4. Figure 4.7

indicates that the composite is always toughened (i.e., Bub < 1) for 8f greater

than Em. As expected, toughening in the unbridged configuration increases

with higher ratios of Ef/E. and dtip/d., i.e., as the nearest inhomogeneity

becomes stronger and closer to the crack tip. These results indicate that a

tougher unbridged composite may be obtained by increasing fiber stiffness

and reducing fiber diameter (i.e., fiber spacing).

4.2.1.2 Stresses

The mode I crack loading creates a severe tensile stress field in the

vicinity of the crack tip. This tensile field should both reduce the

compression at the fiber/matrix interface and increase the tension in the

matrix near the crack tip. Figures 4.8 and 4.9 support these assertions and
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also indicate how the interface and matrix stresses, given by al(u)/Gi(o) and

m(u)/o,(), respectively, depend on the crack tip position dtip/d . and stiffness

ratio Ef/E.. These figures show that the highest principle stress in the

upstream matrix region, a. (U) , increases and the upstream interfacial

compression, Gi(u), decreases as the crack approaches the upstream fiber and

as the stiffness ratio decreases. Note that the upstream matrix stress

concentration a,(u)/. (o) is typically high (in the range 3 to 5) while the

reduction in upstream interface compression 0 i(u)/oi ° ) is generally less than

5%. The dependence on stiffness ratio is expected from §4.2.1.1 where Kti p is

found to increase as Ef/E. decreases. The observed effect of crack-tip

position, however, is in contrast to the above toughening results ( 3ub

decreases as dri/d. increases). The stresses aj(u) and a,(u), rather, rise with

dtip/d. as the trend in decreasing Kti p is outweighed by the increasing

proximity of the crack tip to the location of the stresses.

These unbridged model stress results indicate that upstream interface

slipping/debonding is unlikely, since i (u) only decreases slightly from the

initial interface compression oi (° ). The lack of upstream fiber debonding

subsequently perpetuates the unbridged configuration by restraining fiber

pullout. Additionally, the stress results illustrate a high stress concentration

in the upstream matrix region, indicating likely fracture there. Typically, the

crack in an unbridged composite is understood to propagate by successive

matrix/fiber/matrix fracture. The generally high toughness of reinforcing

fibers and the high stress concentration in the upstream matrix region,

however, could cause a more complex crack propagation process in an

unbridged composite. For instance, the upstream matrix region may fail before

the tough upstream fiber, which, in turn, could then cause the fiber to fail,
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due to the lack of debonding. This failure process would proceed as

matrix/upstream matrix/fiber, rather than the simple process described above.

In either case, however, the unbridged crack is self perpetuating, i.e., it

creates upstream conditions (no debonding, high matrix stress concentration)

conducive to further fiber failure.

4.2.2 Bridged Model

In the bridged analyses, toughening is due to both inhomogeneity and

fiber bridging effects. As described in §4.1.4, the steady-state portion of the

bridged crack does not contribute to the Ktip, and the resulting toughening is

independent of the total crack length a,. Rather, the bridged toughening

parameter 13B relates the toughening to the fiber size, which controls the size

of the high-gradient, crack-tip bridging region. For the cases examined here,

38 is 0(1), indicating that the effective size of the crack is on the order of

the fiber size. The upstream interface and matrix region stresses are

described by the ratios 0 i(u)/o 1 (O) and a,(u)/ 0 ( ° ), respectively. Note that

these stress ratios and the bridged toughening parameter 3.., due to the fiber

pullout load-displacement behavior, are dependent on load level o,/r 1 (° ),

friction coefficient p and stiffness ratio Ef/E. in addition to crack tip position

dtip/d. . The effect of friction coefficient, however, is found to be small in the

toughening results and thus the dependence of aj(u) and a.(U) on p are not

reported here.

4.2.2.1 Toughening

Figure 4.11a illustrates typical load dependence of the toughening

parameter 0.S, when Ef/E. = 1 and dtip/d. = 50.0%. Note that %s :: 1 and

subsequently Kti p t Oc,.(ndf), indicating the small effective crack length. The

toughening is directly controlled by the steady-state fiber pullout behavior --
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a., is smallest (and the toughening maximum) when the bridging load-

displacement behavior is stiffest (when the fibers are sticking). At higher

loads, the bridging fibers slip and the pullout response softens (as shown in

Fig. 3.21) causing 3. to increase and the toughening to decrease.

Figures 4.1la through 4.11c show the dependence of 0., on interfacial

friction coefficient p for stiffness ratios Ef/E. of 1, 2 and 4 when dtip/d . =

50.0%. Note that in Fig. 4.11a, when Ef/E. = 1, B.. is independent of the

friction coefficient. Additionally, in all Figs. 4.11a through 4.11c, the

toughening during sticking (small o0/Ti(O)) does not depend on li. The results

of Chapter 3 predict this behavior; the linear sticking steady-state fiber

pullout response (and the nonlinear slipping response when Ef/E. = 1) is

independent of p. In Figs. 4.11b and 4.11c, where Ef/E. = 2 and 4,

respectively, the toughening increases subtly with p as slipping increases;

this is predicted in Fig. 3.21b, which shows steady-state fiber pullout

response stiffening slightly with increasing friction coefficient.

The effect of stiffness ratio Ef/E. on the toughening parameter 13B. when

p = 0.45 and dtip/d . = 16.7%, 50.0% and 83.3% is shown in Figs. 4.12a through

4.12c, respectively. Note that at all crack tip positions the toughening is

strongly dependent on Ef/E. and increases as this ratio increases. This

behavior is again predicted in Fig. 3.21a, which shows fiber pullout stiffening

strongly with increasing Ef/E., and by the unbridged analyses of §4.2.1.1

which indicate fiber/crack-tip toughening effects increasing with Ef/E*.

Figures 4.13a through 4.13c show the variation of the toughening

parameter 13, with crack tip position dtip/d. when p = 0.45 and Ef/E = 1, 2

and 4, respectively. These figures indicate a reduc 'ion in the toughening as

the crack tip departs from the downstream fiber and its bridging effects
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decrease. These toughening results are in contrast to the trends observed in

the unbridged model and indicate the dominance of the fiber bridging among

the various toughening mechanisms.

The above numerical toughening results compare favorably with the

limited experimental values obtained in the literature. The experimental

results of Ref. [5] are used here as an illustration because of the superior

test methodology employed by Bhatt and Phillips, i.e., tensile testing instead of

flexure testing is used. Bhatt and Phillips report a matrix microcracking

stress of 33 - 40 ksi for the :30% volume fraction SCS-6/RBSN composite. The

stiffness of the fibers and matrix are 16 and 60 Msi, respectively, while the

fiber diameter is 0.0056 inches, and a typical toughness KIc of the low density

RBSN matrix is 3 ksilin. The nominal interfacial shear stress Uj( ° ) is estimated

to be near 2.5 ksi in [5], giving o:/zt 1 () : 14 at microcracking. The friction

coefficient is not reported in [5], but its effect is s iall, as seen in Fig. 4.11.

From Fig. 4.12, the least toughening (i.e., largest B..) for oc/ti ( ° )  14 and

Ef/E. t 3.8 occurs at dtiv/d. = 83.3% and yields the toughening parameter 13BS

* 0.6. These values of 0.., df and Kjc (M), and the definition of Eq. (4.2) yield

a predicted composite matrix microcracking stress of approximately 37 ksi,

very near the experimentally measured values.

To obtain a tougher bridged composite, the trends revealed by the

bridged analysis indicate that friction coefficient Ii and stiffness ratio Ef/E.

should be large while fiber diameter should be small. A large friction

coefficient and stiffness ratio reduce Kti p by decreasing the toughening

parameter 0... A decreasing fiber diameter, however, lessens Ktip not by

reducing 2.0, but by lowering the reference stress intensity factor Kf

ocJ(vtdf).

52



In the Figs. 4.11 through 4.13, the highest toughening occurs when the

fibers are sticking. Thus, these figures indicate that the maximum composite

toughness occurs when the nominal slipping shear stress ci (
o) is large enough

to prevent fiber slipping. Realistically, however, if -r ( ' ) is too large the

fibers may fail before the composite microcracks, thus eliminating the fiber

bridging. The critical condition, i.e. when the fibers fail as the matrix

microcracks, is given from Eqs. (4.2) and (4.3) when Kti p = Kc,(M) and c =

Vf*Gult M9'

3s crit = Klc(M)/[Vfulttf4(1Tdf)]. (4.6)

As an illustration, in the experimental example above where KIc ( m) - 3 ksijin,

oult(f) 2 550 ksi, df z 0.0056, and Vf t 30%, the critical bridging toughening

parameter .sscrit is approximately 0.14. Thus, for 13., < 0.14, the SCS-6/RBSN

composite will fail in a catastrophic manner -- composite failure will occur

before microcracking. The toughening Figs. 4.11 - 4.13, however, indicate that

for Ef/E m z 3.8, the toughening parameter 0.. is always greater than Dsscrit .

Thus, ideally, the SCS-6/RBSN composite should always fail non-

catastrophically. In-situ degradation of fiber and matrix properties, and other

realistic effects, however, could limit the actual performance of the composite.

4.2.2.2 Stresses

Similar to the unbridged model, the loading of the bridged crack causes

a reduction in the compression at the fiber/matrix interface ahead of the

crack tip. This effect, and its dependence on load oc and stiffness ratio Ef/E.

when dtip/d. = 50.0% is shown in Fig. 4.14. For relatively small loads (Oc/ ' (0)

> 2) the decrease in ai ( U) is larger than that observed in the unbridged

model. Note that at higher loads the stress 0 i(u) is zero for Ef/E. = 1 and
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Ef/E. = 2, indicating interface opening ahead of the crack tip. At higher

loads than those investigated, the interface may also open for Ef/E. = 4. Note

that in Fig. 4.12b, however, the load dependence of the toughening for Ef/E. =

2 (interface opens) and Ef/E. = 4 (interface remains closed) is similar,

indicating that the toughening is not significantly affected by the interface

opening ahead of the crack tip. In agreement with the bridged model

toughening results, the loss of interface compression is less severe as the

stiffness ratio increases, due to an accompanying decrease in Kti p .

Figure 4.15 illustrates the effect of crack tip position dtip/d . and

applied load oc on the interface compression immediately ahead of the crack

when Ef/E. = 4. As expected from the toughening results, as the crack

approaches the upstream interface (dtip/d. increases) the interface

compression is reduced. When the crack tip is at the closest position (dtip/d.

= 83.3%) the interface opens at medium loads (cc/ti( ° ) > 5) ahead of the crack

tip. The interface opening, however, does not adversely affect the load-

dependent behavior of the toughening, as shown in Fig. 4.13c.

In contrast to the unbridged model results, the stress concentration in

the first uncracked upstream matrix region of the bridged model is typically

small (near unity), due to the strong restraining effect of the bridging fibers.

Figures 4.16 and 4.17 illustrate the variation of the upstream matrix stress

concentration a.(u)lam(0) with remote applied load aC, stiffness ratio Ef/E., and

crack tip position dtip/d.. The effects of c c , Ef/E. and dtip/d . are similar to

the trends seen in toughening. As c and dtip/d. increase and as Ef/E.

decreases the stress concentration a.(u)/o.(0) rises along with Kti p .

Thus, in the bridged analysis, the stress results exhibit trends similar

to the toughening results. The observed stresses also indicate that interface
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opening ahead of the crack tip is likely, although this opening does not

adversely affect toughening. Interfacial opening, however, does promote

easier fiber pullout and thus serves to perpetuate the bridging. Also, the

stress concentration in the upstream matrix is small, indicating the very local

nature of the crack-tip singular stress field. Thus, the crack propagation is

controlled by localized fracture at the crack tip -- the low values of

,0(u)/a( 'o) indicate a low likelihood of "premature" matrix failure (i.e. failure

ahead of the crack tip) in the upstream matrix region. Subsequently, some

three-dimensional propagation mechanism (crack front bowing for instance)

must be active for the crack to pass the upstream fibers. Regardless of the

fiber-passing mechanism, however, the stress results indicate that the bridged

crack is self perpetuating -- it creates upstream conditions (interface

debonding and controlled, local matrix fracture) conducive to sustained

bridging during crack propagation.
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5. CONCLUSIONS

Toughening mechanisms of fiber-reinforced ceramic composites have been

investigated, specifically including the dominant and controlling two-dimensional

mechanisms of crack bridging and crack-tip/fiber interaction. To better

understand the crack bridging process, fiber pullout mechanics were

investigated and dominant two-dimensional elasticity solutions governing the

pullout mechanisms were obtained. A two-dimensional finite element analysis

employing the pullout results modeled both crack bridging and crack-tip/fiber

interaction phenomena in an investigation of toughening mechanics.

Additionally, specific stresses related to the crack propagation were reported.

The results of the steady-state fiber pullout and composite toughening analyses

can now be summarized.

5.1 STEADY-STATE FIBER PULLOUT

1. The interfacial shear stress varies exponentially in the sticking and

slipping regions of two-dimensional steady-state fiber pullout. The

governing exponential constants and the overall fiber and matrix stress

fields (in the nonsingular regions) have been obtained for various

geometries and material properties.

2. In the sticking region the interfacial shear stress always decays such

that isostrain is obtained away from the free edge.

3. In the slipping region for most typical composite configurations (Ef/E.

> 1, vf < q.) the fiber/matrix interface compression increases during

pullout, tending to increase slipping friction and decrease the likelihood

of debonding.
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4. The stick/slip, pullout force-crack opening displacement response of

steady-state fiber pullout is dominated by the interfacial shear stress

variation in the sticking and slipping regions. Although earlier analyses

reasonably predict the overall pullout response, they neglect the realistic

stick/slip, linear/nonlinear behavior modeled by the current analysis.

5. Comparison with the current analytical results indicate the straight-

forward finite element methods that were employed in the composite

toughening model accurately simulate the overall two-dimensional fiber

pullout response.

5.2 COMPOSITE TOUGHENING

5.2.1 Unbridged Model

1. Crack-tip/fiber interaction toughening in the unbridged configuration

follows expected trends, increasing with stiffness ratio and proximity of

the crack tip to the stiff upstream fiber.

2. In the range of parameters investigated here, the reduction of Kti p

due to the inhomogeneity is typically within 0 - 30%, indicating

substantial toughening.

3. The crack loading reduces the compression at the immediate upstream

interface only slightly, typically by less than 5%. This small reduction in

interface compression diminishes the potential for fiber pullout.

4. The crack loading causes a high stress concentration in the upstream

(uncracked) matrix region, indicating likely matrix failure there.

5. The lack of fiber/matrix debonding and high stress concentration in

the uncracked upstream matrix are not conducive to crack bridging, thus

serving to sustain the unbridged crack propagation.
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5.2.2 Bridged Model

1. The composite toughening in the bridged configuration is independent

of the total crack length a,. The bridged toughening parameter 3.. is

typically 0(1), indicating that the effective length of the crack is of the

order of the fiber size, due to the steady-state bridging.

2. The composite toughening increases with fiber/matrix stiffness ratio

and interfacial friction coefficient, but decreases with increased remote

loading. This toughening behavior is a direct result of the steady-state

bridging load-displacement behavior which stiffens with increasing

fiber/matrix stiffness ratio, increasing friction coefficient, and decreasing

remote applied load. For a given composite configuration, the highest

toughening occurs when the fibers are sticking.

3. The toughening decreases as the crack tip departs the downstream

fiber and approaches the upstream fiber, illustrating the dominance of the

crack bridging over the crack-tip/fiber toughening mechanism.

4. The crack loading greatly reduces the interface compression at the

immediate upstream interface, promoting fiber debonding. In some of the

bridged composite models analyzed, the interface opens. The interface

opening, however, does not adversely affect the composite toughening.

5. The crack-tip K-field is very localized within the cracked matrix

region. Subsequently, the stress concentration in the upstream

(uncracked) matrix region is small, typically near unity, indicating

unlikely matrix failure there.

6. The promotion of fiber debonding and the controlled, local nature of

the matrix fracture are conducive to crack bridging, thus serving to

sustain the bridged crack propagation.
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Configuration Loading Error(%)

Isotropic, Homogeneous External
Griffith-Cracked Plate Remote Tension a, 0.2 a

Isotropic, Homogeneous Internal
Griffith-Cracked Plate Crack Face Pressure (-o) 0.2 a

Isotropic, Homogeneous Internal
Griffith-Cracked Plate Crack Face Point Load P 0.5 a

Isotropic, Homogeneous External
Edge Cracked Plate Remote Tension o 0.2 a

Bimaterial Plate Internal
ao/D = 0.85 d Crack Face Pressure (-a c ) 4 b

Bimaterial Plate Internal
a./D = 0.99 Crack Face Pressure (-o) < 10 b.c

a See Ref. [511 fdr analytical solution.

b See Ref. [27] for analytical solution.

C This error is only an estimate. The results of Ref. [27] are given only for

ao/D < 0.95.

d Crack length is 2a. and 2D is the distance between bimaterial interfaces.

Table 4.1. Comparison of finite element predictions and the analytical solutions for
various test cases.
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Figure 1.1. Idealized longitudinal ', nsile stress-strain response of a unidirectional
fiber reinforced ceramic composite.
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Figure 1.2a. Idealized initial configuration of a propagating crack in a
unidirectional fiber reinforced ceramic. The crack front is straight and lies
between bridged and approached fibers.
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Figure 1.2b. Idealized bowing configuration of a propagating crack in a
unidirectional fiber reinforced ceramic. The crack front bows out as it approaches
the constraining fibers.
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unidirectional fiber reinforced ceramic. The seperate crack fronts between fibers
join and breakaway as the fibers enter the crack.
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Figure 3.1a. Idealized steady-state bridging of a long crack.
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Figure 3.lb. A single pullout "unit cell" -- smallest repeating element around a

fiber in the steady-state bridging region.
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Figure 3.2. One symmetric half of the pullout unit cell and appropriate symmetry
and periodicity boundary conditions. The interface along x = 0 is closed but
frictionally slipping over some region.
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Figure 3.3. The finite element pullout model in a deformed configuration.
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ILI

Figure 3.4a. Results of the finite element pullout model showing the interfacial
shear stress t1i when Ef/E, = 1 and vi/ Y = 0.25. The sticking point is at y =L.
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shear stress x, when Ef/E. = 16 and vf = v.= 0.25. The sticking point is at y = L.
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Figure 3.5. Idealized variation of the interfacial shear stress ri: slipping region
(1), sticking region (2), sticking isostrain region (3), free edge singularity (y = 0)
and mode II crack tip singularity (y = L).
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Figure 3.6. Interfacial shear stress Ti variation during the idealized pullout
process. As the pullout force is increased, the fiber sticks (a), critically sticks (b),
and eventually slips (c).
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1.5 FIBER PULLOUT
-Vf = 1/3

- f = Pm 0.25
0.3

II ----- A- A - ---

Equation (3.2)
A AA-A Ef/ Em 1

-@ Ef/Em 16
0 .5 I I I I I I I I i I I I I I I I I

0 5 10

L/'(Xf - Xm)

Figure 3.7. Comparison between the finite element pullout model results and Eq.
(3.2). The interfacial shear stress at the sticking point ti(y = L) is approximately
equal to the nominal interfacial shear stress ti(0).
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Figure 3.8. Idealized free body diagram of the steady-state puUoput unit cell.
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Figure 3.9a. Variation of slipping constant a with volume fraction and relative
fiber/matrix stiffness when vf = v= 0.15.
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Figure 3.9b. Variation of slipping constant a with volume fraction and relative
fiber/matrix stiffness when vf = we = 0,25.
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Figure 3.9c. Variation of slipping constant a with volume fraction and relativefiber/matrix stiffness when vf = v. = 0.35.
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Ef/Em 3
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Figure 3.10. Variation of slipping constant a with volume fraction for Ef/E = 3 and
Ef/E. = 1/3 showing the antisymmetry of a with respect to Ef/E. = 1 and Vf = 50%.
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Figure 3.11. Variation of slipping constant a with volume fraction and u when Ef/F
- 1.
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Figure 3.12. Variation of slipping constant a with material properties when Ve

1/3.
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1.0
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Figure 3.13a. Comparison of finite element predictions for a with the analytical
solution when Ef/E. = 1 and vf = .=0.25.
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Figure 3.13b. Comparison of finite element predictions for a with the analytical
solution when Ef/E . = 2 and vf = v. = 0.25.
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Figure 3.13c. Comparison of finite element predictions for a with the analytical
solution for Ef/E, = 1 and vf - v, = -0.10.
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6.0 D . SLIPPING STRESSES ON Y L

Vf = 1/3
Ef= 3E,
-f- Vf = 0.25
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Figure 3.14a. Variation of stresses with x in the slipping region along y = L.
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Figure 3.14b. Variation of stresses with y in the slipping region along the
interface x = 0.
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Figure 3.14c. Variation of displacements with x in the slipping region along y = 0.
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Figure 3.15. Variation of sticking constant T with volume fraction and relative
fiber/matrix stiffness when vf = q.
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Figure 3.16. Variation of sticking constant Y with volume traction for E f/E. = 3 and
1/3 showing the symmetry of Y with respect to E,/E. = 1 and Vf = 50%.
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Figure 3.17. Variation of sticking constant T with volume fraction and T when
Ef/E. = 1.
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Figure 3.18. Variation of sticking constant Y with material properties when
Vf = 1/3.
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Figure 3.19a. Comparison of finite element predictions for 7 with the analytical
solution when Ef/E. = 1 and vf =
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Figure 3.19b. Comparison of finite element predictions for T with the analytical
solution when Ef/E. = 2 and vf = v.
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Figlire 3.19c. Comparison of finite element predictions for T with the analytical
solution when Ef/E. = 1 and vf - v = -0.10.
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Figure 3.20a. Variation of stresses with x in the sticking region along y = L.
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Figure 3.20b. Variation of stresses with y in the sticking region along the

interface x = 0.
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Figure 3.20c. Variation of displacements with x in the sticking region along y L.
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Figure 3.21a. Effect of stiffness ratio Ef/E* on predicted fiber pullout response.
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Figure 3.21b. Effect of friction coefficient p on predicted fiber pullout response.
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Figure 3.22. Comparison of finite element predictions, present analytical
predictions, and the constant xi predictions of Marshall, Cox and Evans [13] for
fiber pullout response.

103



Figure 3.23. The coarse finite element pullout model in a deformed configuration.
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Figure 3.24. Comparison of predicted pullout response from coarse and fine finite
element models with the current analytical solution.
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Figure 4.1. A cracked unidirectional composite plate and the three modeling scales:
the smeared-out global region, the discrete fiber/matrix micromechanics region and
the singular crack tip region.
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CRACK

TIP

Figure 4.2. The global finite element mesh representing one-quarter of the cracked

plate of Fig. 4.1.
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/ i 1- -

"q i 7I I --

CRACK
TIP

Figure 4.3. The micromechanics mesh representing the discrete fiber (Vf 1/3) and
matrix around the crack tip. This mesh fills the rectangular void in the global
mesh of Fig. 4.2.
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Figure 4.4a. A typical singular mesh representing the crack-tip singular regionwith dti/d. = 50.0%. The singular meshes fill the rectangular void in the
micromechanics mesh of Fig. 4.3.
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Figure 4.4b. The singular region mesh with dtpd 16.7%.
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Figure 4.4.c. The singular region mesh with dtip/d. =33.3%.
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Figure 4.4d. The singular region mesh with dd.66.7%.
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A3

F'igure 4.4e. The singular region mesh with =tpd 83.3%.
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Figure 4.5. Location and orientation of the upstream interface compressive stress
0, ( U) and matrix tensile stress Y.(u) .
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-60 -40 -20 0x/d,

Figure 4.6a. Typical crack face profile when Ef/E - 1 and the fibers are sticking.
The matrix crack opening displacement v is zero at the fiber/matrix interface.
(Note the discrete local and smeared-out global bridging regions.)
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Figure 4.6b. Typical crack face profile when Ef/E. = 4 and the fibers are sticking.
The matrix crack opening displacement v is zero at the fiber/matrix interface in the
discrete region.
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Figure 4.7a. Typical crack face profile when Ef/E = 1 and the bridging fibers are
slipping. The matrix crack opening displacement v is non-zero at the fiber/matrix
interface in the discrete region.
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Figure 4.7b. Typical crack face profile when E1 /E = 4 and the bridging fibers are
slipping. The matrix crack opening displacement v is non-zero at the fiber/matrix
interface in the discrete region.
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Figure 4.8. Variation of the unbridged toughening parameter B3 ub with stiffness
ratio Ef/E. and crack tip position dtiv/d =.
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Figure 4.9. Variation of the immediate upstream interface compressive stress ai(u)

with E 1/E. and dtip/d, in the unbridged model.
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Figure 4.10. Variation of the highest principle stress in the first upstream matrix
region o*" with Ef/E. and dtip/d, in the unbridged model.
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Figure 4.11a. Variation of the bridged toughening parameter B. with friction
coefficient p and remote applied loading c when E/E = 1 and dtip/d, = 50.0%. The
toughening is independent of p.
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Figure 4.11b. Variation of the bridged toughening parameter B., with friction

coefficient p and remote applied loading oc when Ef/E. = 2 and dtip/d. = 50.0%.
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Figure 4.11c. Variation of the bridged toughening parameter 13. with friction
coefficient pi and remote applied loading oc when Ef/E. = 4 and dtip/d. = 50.0%.
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Figure 4.12a. Variation of the toughening parameter B. with stiffness ratio Ef/E,
and remote applied loading oa when dtip/d = 16.7% and p = 0.45. The toughening
increases with Ef/E=.
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Figure 4.12b. Variation of the bridged toughening parameter B., with stiffness
ratio Ef/E, and remote applied loading a. when died = 50.0% and ij = 0.45.
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Figure 4.12c. Variation of the bridged toughening parameter I3* with stiffness
ratio Ef/EI and remote applied loading o when driv/d. = 83.3% and p = 0.45.
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Figure 4.13a. Variation of the bridged toughening parameter a., with crack tip
position dti./d. and remote applied loading a c when Ef/E. = 1 and p = 0.45.
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Figure 4.13b. Variation of the bridged toughening parameter B.. with crack tip
position dtip/d. and remote applied loading oc when Ef/E. = 2 and i1 = 0.45.
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Figure 4.13c. Variation of the bridged toughening parameter B. with crack tip
position dt.d and remote applied loading oc when Ef/E. 4 and ji = 0.45.
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Figure 4.14. Variation of the immediate upstream interface cottApressive stress al(U)
in the bridged model with stiffness ratio Ef /E. and remote applied loading a,, when

0.45 and di 1p/d. = 50.0%.
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Figure 4.15. Variation of the immediate upstream interface compressive stress oi(u)
in the bridged model with crack tip position dtip/d. and remote applied loading a,
when E 1/E= = 4 and p = 0.45.
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Figure 4.16. Variation of the highest principle stress in the first upstream matrix
region =( ) in the bridged model with Ef/E, and remote applied load o when
dt/ = 50.0% and Pi = 0.45.
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Figure 4.17. Variation of the highest principle stress in the first upstream matrix
region 0 .(u) in the bridged model with dtip/d. and remote applied loading or when
Er/F- = 4 and i = 0.45.
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APPENDIX 1

SLIPPING REGION INTERFACIAL SHEAR STRESS

The resulL, cof the finite eiement pullout model of Chapter 3 suggest that

the interfacial shear stress may behave exponentially in y in the slipping region

of the steady-state fiber pullout unit cell. A simplistic shear-lag mechanics

argument supports this observation. From equilibrium we expect (roughly)

<Or,> a fTidy + C (A.1)

where <cry> is the average stress on any surface y = constant and r i is the

interfacial shear stress. Due to Poisson effects and the constant displacement

conditions at the vertical boundaries (see Fig. 3.2),

a i a <or,> (A.2)

where a i is the interfacial normal stress. Also, Coulomb friction requires that

= -(A.3)

in the slipping region. Equations (A.1), (A.2) and (A.3) then yield

ti a fidy,

which is satisfied when the slipping interfacial shear stress T1 is exponential.
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